English Version

杜高辉教授

2017年03月15日 09:49  点击:[]

杜高辉 教授

杜高辉,理学博士,博士生导师,陕西科技大学教授。2003年毕业于中国科学院物理研究所,获理学博士学位;2003 - 2007年期间先后在比利时安特卫普大学、美国亚利桑那州立大学、佛罗里达国际大学进行博士后研究。主要从事纳米能源材料和电子显微学研究,发表SCI论文200余篇,引用12000多次; 承担完成国家自然科学基金项目2项,省级项目多项;2010年获得国家自然科学二等奖,2011年入选教育部“新世纪优秀人才支持计划”。2016年荣获山西省科学技术二等奖,2017年荣获浙江省自然科学二等奖,入选陕西省“百人计划”高层次人才。

研究方向:原位TEM、纳米材料、锂电池材料、固态电池

联系方式: E-mail: dugaohui@sust.edu.cn

代表性成果

1) 彭练矛,陈清,杜高辉,定量电子显微学方法与氧化钛纳米结构研究,国家自然科学二等奖,2010

2) 郭俊杰,杜高辉, 侯莹, 苏庆梅,许并社,石墨烯类炭基新型能源材料的界面构效关系, 山西省科学技术奖二等奖,2016年

3) 杜高辉,苏庆梅,张俊,谢健,赵新兵,能量储存/转换功能纳米结构的制备与特性研究,浙江省自然科学奖二等奖,2017年

4) Copious dislocations defect in amorphous/crystalline/amorphous sandwiched structure P–NiMoO4 electrocatalyst toward enhanced hydrogen evolution reaction; Acs Nano 2024, 18, (4), 3791-3800.

5) Flexible CNT@Porous carbon sponge cathode with large mesopores for high-rate zinc-ion hybrid capacitors; Carbon 2024, 218, 18695.

6) Mg/Fe site-specific dual-doping to boost the performance of cobalt-free nickle-rich layered oxide cathode for high-energy lithium-ion batteries; J Energy Chem 2024, 91, 670-679.

7) In situ lithiation modulation of LiNi0.8Co0.1Mn0.1O2 as bifunctional electrocatalysts for highly efficient overall water splitting; J Colloid Interf Sci 2024, 653, 246-257.

8) 3D carbon nanotube-mesoporous carbon sponge with short pore channels for high-power lithium-ion capacitor cathodes; Carbon 2023, 203, 479-489.

9) Stabilizing solid-state lithium metal batteries through In Situ Generated Janus- heterarchical LiF-rich SEI in Ionic Liquid Confined 3D MOF/Polymer Membranes; Angew Chem Int Edit 2023, 62, (39), e202304947.

10) Unraveling the degradation mechanism of LiNi0.8Co0.1Mn0.1O2 at the high cut-off voltage for lithium ion batteries; J Energy Chem 2023, 77, 428-437.

11) Sulfur-deficient MoS2-carbon hollow nanospheres for synergistic trapping and electrocatalytic conversion of polysulfides; J Colloid Interf Sci 2023, 630, 535-543.

12) Magnetic electrode configuration with polypyrrole-wrapped Ni/NiFe2O4 core-shell nanospheres to boost electrocatalytic water splitting; Chem Eng J 2023, 454, 140278.

13) Three-dimensional carbon network-supported black phosphorus-cobalt heterojunctions: An efficient electrocatalyst for high-rate oxygen evolution; J Colloid Interf Sci 2023, 651, 415-423.

14) Synergy of strong/weak interface adhesion forces and Li2S additive enabling high performance full anode-free lithium-metal batteries; J Mater Chem A 2023, 11, (46), 25715-25723.

15) Alloying and Nanotechnology for Sn-based Anode Materials: Paving the Way to the Future of Lithium-Ion Batteries; Batteries Supercaps 2023, 6, e202300304.

16) Pre-lithiated Edge-enriched MoS2 nanoplates embedded into carbon nanofibers as protective layers to stabilize Li metal anodes; Chem Eng J 2022, 429, 132479.

17) BiOI nanosheets-wrapped carbon fibers as efficient electrocatalyst for bidirectional polysulfide conversion in Li–S batteries; Chem Eng J 2022, 430, 133015.

18) Chemical Energy-Driven Lithiation Preparation of Defect-Rich Transition Metal Nanostructures for Electrocatalytic Hydrogen Evolution; Small 2022, 18, (35), 2202779.

19) Porous flexible nitrogen-rich carbon membranes derived from chitosan as free-standing anodes for potassium-ion and sodium-ion batteries; Carbon 2021, 181, 1-8.

20) Ni3S2/Cu-NiCo LDH heterostructure nanosheet arrays on Ni foam for electrocatalytic overall water splitting; J Mater Chem A 2021, 9, (48), 27639-27650.

21) Organic molecule confinement reaction for preparation of the Sn nanoparticles@graphene anode materials in Lithium-ion battery; J Colloid Interf Sci 2021, 589, 308-317.

22) Constructing anatase TiO2/Amorphous Nb2O5 heterostructures to enhance photocatalytic degradation of acetaminophen and nitrogen oxide; J Colloid Interf Sci 2021, 601, 346-354.

关闭